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This informal memo is meant to help the BASIS CRSP project team think through some 

of the econometric and data issues involved in estimating the multiple-output production 

functions we will use to calibrate the CLASSES model for different sites.  Much of this will 

be extremely basic to most of you.  We have tried to write this in a style accessible to any 

team member likely to work with the data on these estimations.  We hope this memo will 

ignite discussion and collaboration among the team on these tasks. 

There will be small differences across sites due to differences in data and the underlying 

agroecologies.  A key objective of this memo is to try to standardize, to the maximum degree 

that is feasible and appropriate, the methods we are using in each site so that differences in 

estimates are more likely to reflect true differences rather than be artifacts of the statistical 

methods employed.  Because of the considerable differences across sites, we need to 

estimate production functions specific to each site from the relevant data.  We will not pool 

the data across sites.   

Intercropping is common in our Kenya and Madagascar research sites.  Yet 

intercropping is qualitatively different from some kind of “mixed monocropping”. The fact 

that two or more crops are raised together on the same patch of land generates interactions 

between the crops that may be synergistic, antagonistic, or both. For example, the crops may 

compete for light and soil moisture, but may also help create a favorable micro environment 

for each other, increasing accessibility of soil nutrients, or decreasing the severity of pest 

infestations, etc. Moreover, for most inputs, it is impossible to target input use to one crop, 

excluding the other(s). Most inputs are applied jointly, and their effects on the respective 

crops will depend not only on how each crop responds to the input individually, but also on 

how the input affects the interaction between them. Thus, for our purposes, intercropping 

entails a single crop production activity, producing multiple outputs. 



In economics, multiple-output production functions are often estimated in the dual form, 

i.e., represented by their cost or profit functions (e.g., R.D.Weaver AJAE 1983). But where 

production is mostly for subsistence, and only a small fraction of agricultural inputs and 

outputs are traded, that approach may be inappropriate because dual methods rely 

fundamentally on input and output prices, which are commonly not observed.  Imputing 

prices where no transactions are observed will necessarily introduce an errors in variables 

problem.  Indeed, even just using market-level observations that are not specific to the 

individual farmer will introduce errors in variables problems due to variability in market 

prices and in transactions costs across farmers.  For multiple reasons, then, dual approaches 

are probably inadvisable in smallholder agriculture applications.   

In calibrating the CLASSES model, we therefore want to specify and estimate multiple-

output production functions in primal form, i.e., conversion functions that map inputs into 

outputs. The primal approach nonetheless suffers its own potential problems of endogeneity 

of inputs.  Observed input application rates commonly respond to unobserved production 

shocks (e.g., people work less on a field that has been trampled and destroyed by wildlife, so 

regressing output on labor would generate a spurious positive relation between the variables, 

biasing upwards estimated output elasticities with respect to labor).  So we need to take some 

care to instrument for highly endogenous inputs – those allocated after planting – in 

estimating primal production functions so as to minimize the endogeneity problem.  We will 

come to this below. 

Multiple-Output Production Functions 

A direct and easily interpretable way to estimate a multiple-output production is to 

formulate the production system as a system of equations (e.g., of equations that are linear in 

their estimable parameters), and estimate them simultaneously (e.g., by feasible generalized 

least squares). However, this is computationally demanding, and may be infeasible with our 

data (based on Heidi’s quick attempts with 2002 Madzuu production data).  An alternative is 

to estimate a system of linear equations by estimating it equation by equation.  But that 

entails the implicit assumption that all disturbances are independent, which does not make 

sense for intercropped crops. 

 An easier and more elegant way to do it may be the ray production function 

approach recommended by Mickael Löthgren (1997 Economic Letters 57: 255-259 … a copy is 



attached), which is closely related to the distance function with which some of you may 

already be familiar (R. Shephard 1970, Theory of Cost and Production Functions).  This approach 

offers a reasonably straightforward generalization of the standard single output stochastic 

frontier production model. 

The ray production function approach is pretty simple; it sounds more complicated than 

it is.  Total output quantity (i.e., the combination of all products, 1…p) is represented by the 

Euclidian norm (i.e., distance) of the quantities, and a direction measure (i.e., the polar 

coordinates, or angle, related to the ratio of one crop output to the others) for all but a 

reference output. More specifically, the transformation of the observed outputs into a 

composite output – the norm – to be used as a dependent variable is done this way: 
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The Euclidian norm, ║y║, is used as dependent variable in the multi-output production 

function regression, while the polar-coordinate angles, which serve as directional variables, θi, 

are included in the vector of regressors, with the exception of θp.  In the case of just two 

outputs, θ2 is therefore fixed and omitted, leaving just θ1 is the only directional variable 

included as a regressor. This transformation of the data implies that the production of the 

two intercropped crops is viewed as inseparable - this is one production process (with only 

one residual or disturbance) resulting in two outputs. The Euclidian output vector norm lets 



any number of outputs be represented by one single number representing total output, and a 

set of polar-coordinate angles indicating the relationship between the components and the 

total. Note that the estimated multi-output distance measure reflects an iso-output surface 

along which an infinite combination of the p products could be produced simply by varying 

the output ratio between crops. Since the CLASSES model will use composites anyway (e.g., 

“field crops” comprised of beans, maize and sorghum) within which we are not looking to 

model tradeoffs or reallocations of inputs (or investment), this has no significant downside 

for our purposes. 

With this definition of the multi-output dependent variable, estimation of the production 

function follows the very familiar procedure used for single output production functions: 

just specify a functional form and the independent variables, then estimate, do diagnostic 

tests to ensure core assumptions hold with respect to the properties of the regression 

residuals, then conduct inference (i.e., hypothesis testing).  For the purposes of calibrating 

CLASSES, we are mainly interested in just obtaining good estimates for the multi-output 

production function, which can be written as (dropping subscripts) 

    ║y║ = f(x,θ,ε)      (8) 

where x is a mx1 vector of inputs, θ is the (p-1)x1 vector of polar coordinates, and ε is the 

stochastic regression disturbance. 

Panel Data Estimation of Production Functions 

 
With the exception of the Baringo, Embu and Marsabit cropping data, we have multiple 

observations over time on each household.  In most cases, this also means multiple 

observations on each plot.  One of the helpful characteristics of panel data (multiple 

observations in time on the same cross-sectional units) is that they permit us to control for 

unobserved but time invariant characteristics of observational units.  For example, if one 

farmer is especially skilled and another is especially inept, these characteristics were the same 

(or nearly so) in each period for which we have data and – most importantly – these farmer-

specific, unobserved characteristics are correlated with observed variables (e.g., the more 

skilled farmer uses inorganic fertilizer and more labor, the less skilled one uses no fertilizer 

and less labor), then by incorporating a farmer-specific dummy variable we can control 

effectively for these time invariant skill differences (and everything else about the farmer that 



doesn’t change over time that we haven’t already controlled for).  Without that control for 

what are commonly termed “fixed effects”, our estimates of the production function 

parameters will generally be biased and inconsistent.  For plot-specific data, we can go one 

better, in that plot-specific dummy variables (which render household-specific dummy 

variables redundant … we don’t use both) control for time invariant soil, light and 

hydrological characteristics of plots.   

So for the data for which we have multiple observations over time, sample size 

permitting, we want to use fixed effects estimation to control for time invariant unobserved 

heterogeneity across plots and farmers. That means we add a dummy variable taking a value 

of one for each observation on a given unit for which we have multiple observations, and 

value zero otherwise.  We drop the constant term, since each unit will effectively have its 

own intercept estimate.  If sample size is too small, we may have to go to village-specific 

fixed effects, to capture local soils, pest and hydrological conditions.   (For those of you who 

know the difference between fixed and random effects in panel data estimation, we could go 

either way here – equivalently, do both and test which fits the data best – but fixed effects 

are simpler for those less familiar with these methods, I think.  Hence this direction here.)  

Because we pool observations from multiple periods together in estimating panel data 

production models, we also have to worry about intertemporal variation in key factors of 

production, such as rainfall, temperature, cloud cover, etc.  We obviously cannot observe 

these variables for each production unit, but on the assumption that they’re reasonably 

covariate among all production units within a location in a given year, we can simply include 

a year-specific dummy variable (e.g., a dummy for 2002, which effectively shifts the 

production function up or down for 2002 relative to the first year’s observations).   

Inputs and Instruments 

Intercropping entails raising several crops on the same piece of land. Thus, many inputs 

cannot be allocated to any one crop in isolation within the system. This is true for 

application of labor to pre-planting field preparations, as well as weeding labor and 

application of fertilizers and pesticides. However, only maize seeds produce maize seedlings, 

and only bean seeds produce bean seedlings, etc. The crops also do not necessarily reach 

maturity simultaneously, and they may be harvested at different times. Thus, harvesting labor 

may be allocated to the crops individually. So it makes sense to think of some inputs as 



output-specific, while others are not.  If we have data disaggregated by crop, it is easy 

enough to test the hypothesis that one can aggregate inputs across crops on the plot (and 

thereby conserve degrees of freedom in estimation).  We should do this where possible. 

The key inputs are land (plot size), labor (hours as well as plot manager experience and 

education), nonlabor variable inputs (animal traction, inorganic fertilizer, manure, pesticides 

and other chemicals) and exogenous environmental factors (rainfall, slope, soil type, etc.), in 

addition to the p-1 output polar coordinates, θ1 , …,θp-1.  Our surveys asked detailed 

questions on the environmental variables in order that we can control for these adequately 

since their omission typically biases production function parameter estimates otherwise (see, 

for example, the attached 2002 JDE paper by Sherlund et al.).  

Given the focus of our project on the interactions between smallholder management of 

soils and welfare dynamics, it is especially important for us to include measures of 

environmental conditions in our production function estimates.  There is information about 

the respondents’ own assessment of soil fertility in each data set.  There is good evidence 

from elsewhere in Africa that farmers’ subjective assessments of soil quality match soil 

chemistry test results reasonably accurately (see February 2003 special issue of Geoderma).  So 

we can use simple categorical variables for soil quality (good, average, poor).  Soil tests are 

being run for most plots in our samples this summer, so we can subsequently go back and 

replace these coarse, farmer-reported variables with a continuously measured soil chemistry 

indicator variable, such as soil organic matter (SOM).  However, there is no particular reason 

to wait on those results at this stage, although site-specific teams should avail themselves of 

those data as they become available.  The data also contain information on slope, the 

presence of soil and water conservation structures, plot use history, and other covariates that 

affect erosion, soil moisture, etc.  Take advantage of these data. 

 Besides omitting relevant variables – such as unobserved farmer or plot 

characteristics for which we can control in panel data using fixed effects, or environmental 

variables for which we should have reasonable observations – the biggest problem we are 

likely to have with data on inputs arises from endogeneity.  In so far as farmers choose their 

inputs partly in response to unobserved conditions or shocks that will cause observed output 

to deviate from predicted output, this will violate the standard regression assumption that 

the independent variables are statistically independent of the residuals.  The inputs are 



themselves endogenous and, as a consequence, parameter estimates will be biased and 

inconsistent.  The standard approach for fixing this problem involves instrumental variables 

(IV) estimation.  The most commonly used form of IV estimation, and the variant we will 

use, is two stage least squares (2SLS).  In 2SLS, one regresses the endogenous independent 

variable on a vector of exogenous “instruments”, then uses the fitted value from that 

regression as an independent variable in a second regression of the dependent variable of 

interest (in our case, ║yi║) on the independent regressors.  The first stage strips the 

independent regressor of its endogenous component.  The basic principle of IV estimation is 

that one needs instruments that are independent of the regression error term (i.e., truly 

exogenous or at least predetermined) and that one would not believe to have their own 

independent association with the dependent variable of interest. This gives us an 

instrumenting equation x=g(z)+φ, where z is a vector of instruments.  We then use the 

predicted value of the endogenous independent variable (in this case hours worked) from the 

instrumenting equation, x*=g(z), as a regressor in the production function regression.  In 

general, one wants to use as many legitimate instruments as possible so as to maximize 

goodness of fit.  The better the fit in the instrumenting equation, the less loss of precision 

we suffer from stripping away some of the variation in the endogenous regressor.  So don’t 

worry about t-statistics on instruments in the first stage equation; if a variable makes a 

legitimate instrument and increases the regression r2, include it in the instrumenting equation. 

In our case, there will be at least two inputs for which we will want to instrument; 

human labor and animal traction labor. For labor effort (hours worked per plot), one 

reasonable instrumenting equation for which we should have appropriate data in each site 

would use as instruments household composition (# adult males, # adult females, # 

children), total area cultivated (not area of the plot, which is an independent regression in the 

production function), total number of plots cultivated, total number of livestock owned, and 

dummy variables for off-farm or non-farm work by type (e.g., salaried employment, 

agricultural day labor, etc.).  The off-farm/non-farm dummies capture employability 

elsewhere, which affects on-farm labor allocation.  We don’t use actual hours worked in 

these off-farm/non-farm uses (where we have those data) because then we have drifted back 

into the endogenous labor allocation problem.  Animal traction (hours) would use the same 

sort of instrumenting regression.   



Since  fertilizer application in most of these systems is done mostly early in the plant 

growth cycle and because relatively few people use inorganic fertilizer anyway, it likely causes 

negligible problems of simultaneity bias.  We should try to include it, although when the 

subsample of fertilizer users is small, the parameter estimates become highly unstable, so 

don’t be surprised by bizarre estimated fertilizer responses.  We have manure purchase data 

and we know if people apply manure from their own animals.  These data are probably best 

used as simply a dummy variable indicating manure application, although feel free to 

experiment with using a combination of herd size and purchases, if you have sufficient 

degrees of freedom to play with in a given site.  Plot size is determined at the start of the 

season and can reasonably be taken as exogenous to output realizations for a season. Same 

for education and experience.  Chemical applications appear rare in our sample and are likely, 

given financial liquidity constraints, to be responsive to shocks.  With the exception of some 

cash crops for which inputs are provided on credit as an advance against the crop, 

smallholders tend to spray when they’ve got a problem, not preemptively.  This makes 

chemicals usage endogenous, in particular negatively correlated with output, all else held 

equal.  We are probably best served by simply omitting chemicals entirely.   

Allowing for production function shifts 

A central part of our theory of poverty traps is the possibility of discrete jumps in 

productivity for those who can invest in key, lumpy inputs or who can incur the fixed/sunk 

costs of shifting to a different (and presumably, superior) production method.  We therefore 

want to allow for this in our estimation of production functions.    

The key implication is that we need to allow for different marginal products of land 

and/or labor across distinct production regimes.  This is most easily done through 

interaction terms (e.g., with respect to fertilizer) or through nesting completely different 

production technologies, e.g., due to mechanization or use of different cultivation methods 

(e.g., SRI in the case of rice in Madagascar) using switching regressions estimation methods.  

It doesn’t seem that we have sufficient cases of such significant shifts in production 

technologies in our data to justify switching regressions estimation.  So we should probably 

stick just to interaction terms. 

Another form of production function shift that some of us have discussed repeatedly in 

thinking through the structure of CLASSES arises due to the timing of labor activities.  



Farmers who are late in performing key tasks – e.g., due to having to work for wages on 

others’ farms – commonly suffer significant yield losses as a result.  Where we have data on 

specific timing of activities, we can therefore use this.  But since our data are all recall over a 

season or more, I doubt we have sufficiently accurate timing data to capture this effect 

econometrically.  Please let us know if you think it feasible in a site’s data set. 

Multicollinearity and precision 

The CLASSES model, like any simulation tool, depends on reasonably precise parameter 

estimates if it is to replicate observed behavior well and generate useful out-of-sample 

predictions of behavioral patterns.  Multicollinearity – a high correlation among independent 

variables – reflects limited independent covariance between individual regressors, making it 

difficult to isolate the effects of one variable on output, holding the others constant.  Since 

our sample sizes are small in each site, multicollinearity is a concern.  It will be important, 

therefore, to compute correlation matrices among all prospective regressors in the 

production functions prior to estimation and to consider carefully whether to include both 

of any pair of variables that are relatively highly correlated with one another (e.g., r>0.50).   

One input to which this concern commonly applies is seed.  Seed is arguably the most 

important input to any annual crop.  Because seeding densities typically do not vary 

dramatically within a population, seed quantities tend to be strongly, positively correlated 

with land area under cultivation.  Moreover, seed quantities are notoriously difficult for 

smallholders to report accurately since they commonly store seed from the previous harvest 

for planting the next season or year and don’t weigh it.  Those who purchase seed typically 

have a more accurate recall of seed quantity applied.  But few of our farmers buy seed.  As 

but one example, seed application quantities appear highly unreliable in the Madzuu data.  In 

general, we will not want to include seed quantity because (i) the data are especially prone to 

errors-in-variables problems, and (ii) they tend to be highly correlated with land area. 

Functional form 

As Chambers’ seminal book (Applied Production Analysis: A Dual Approach, Cambridge 

University Press, 1988) emphasizes, choosing a functional form is more art than science.  

The basic principle is that one wants to restrict the empirical results as little as possible since 

classical statistical tests are only valid for inference under the maintained hypothesis that the 



general model is correct.  The goal in our production function estimation is to come up with 

a reasonably accurate numerical representation of the production relationships in play in our 

sites.  These production relationships can be described by (m+1)(m+2)/2 distinct 

parameters: 1 output level for a given input vector, m different marginal physical products, 

and the m(m+1)/2 elements of a symmetric Hessian matrix describing second-order effects.  

To the extent that data availability permits, we want to estimate production functions using 

functional forms that permit there to be (m+1)(m+2)/2 free parameters to estimate.  

Flexible functional forms of this sort are commonly known as generalized quadratic because 

they follow the general form 
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where h(•) and g(•) are arbitrary functions, typically linear, square root or natural logarithm, 

although they could be any function that fits the data well.  The key here is to balance 

flexibility against conserving degrees of freedom so as to get sufficiently precise parameter 

estimates.  This may imply dropping terms, although keep in mind that our objective is not 

inference but rather precise specification of the underlying production technology.  Statistical 

significant is not our first-order concern in this exercise.  

 In general, we probably want to start by letting h(•) and g(•) be simple linear functions of 

the variables (i.e., h(y)=y and g(x)=x).  One reason for this is that many of our input 

variables will have zero valued observations because some (even most) farmers don’t use, for 

example, inorganic fertilizer or animal traction. This necessitates the use of terms that are 

linear or polynomial in the variable itself.  The common practice of taking natural logarithms 

(e.g., a log-log model associated with a Cobb-Douglas production function or a translog 

flexible functional form) is problematic in the face of zero-valued observations since ln(0) is 

not well defined.  Where regularity conditions (if you don’t know what these are, ignore the 

sentence) favor a log-based form such as the translog, then the best practice is to replace 

zero-valued observations with 1/10th (or some similarly very small fraction) of the minimum 

positive observation in the data set.  In general, however, we want to try to estimate 

production functions using a generalized quadratic that relies on transforms of variables that 

are well-defined for all values observed in our data, zeroes included.  



Data Organization and ID Codes 

One final observation on the organization of the data to be used in production function 

estimation for the BASIS CRSP project.  For several of our sites, data are recorded in 

numerous separate files and will need to be combined into larger data files before running 

regressions. That will only be possible if all files contain the necessary identifying variables. 

For data that have been collected at household level, we need the household ID to be 

included, while for data collected at plot level, we need both household ID and plot ID to be 

included. The names of these variables must have the same spelling in each file in order to 

merge them easily. The key is that every data file needs to have the relevant ID code 

attached to each observation: plot ID codes for plot-level data and household ID codes for 

household-level data. 

Conclusion 

 We hope the preceding comments are helpful as you set about estimating multiple 

output production functions from the data from each of our BASIS CRSP project sites.   

This has been a hasty, casual treatment of a reasonably complex subject.  Please do not 

hesitate to ask questions or raise concerns as appropriate.  One of the purposes of this 

memo is to stimulate discussion among the team.  The main objective, however, is to equip 

country teams to get to work on estimating the multi-output production functions that 

characterize the systems under study.  We hope this indeed facilitates your work, we 

welcome your comments and questions on these methods, and we look forward to working 

with you on this over the coming months. 
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